The Casimir Effect: A Force from Nothing

Hendrik Casimir

$$F(d) = -\frac{\pi^2 \hbar c}{240 d^4} A$$

attraction due to confinement of quantum mechanical vacuum fluctuations

H. B. G. Casimir, Proc. Kon. Nederl. Akad. Wet. B51, 793 (1948)

Experimental Observations

• Mechanical Balance

Sparnaay, Physica 24, 751 (1958)

•AFM

Mohideen and Roy, PRL **81**, 4549-4552 (1998)

• <u>Actuation of MEMS</u>

Chan, Aksyuk, Kleiman, Bishop, Capasso, Science **291,** 1941 (2001)

Failure Mechanisms in MEMS

Casimir forces \implies STICTION

Sandia National Laboratory

repulsive Casimir forces:

 $\mu > \varepsilon$ meta-materials

Kenneth et al. PRL **89**, 33001 (2002) Leonhardt, Philbin, New J. Phys. **9**, 254 (2007)

The Critical Casimir Effect

"Phenomena at the walls in a critical binary mixture"

M. E. Fisher and P. G. deGennes, C. R. Acad. Sci. Paris B287, 209 (1978)

Confinement of order parameter fluctuations close to critical points

$$F(z) = A \frac{k_B T_c}{z^3} \mathcal{G}(z / \xi) \qquad \xi = \xi_0 \left| \frac{T}{T_c} - 1 \right|^{-\nu}$$

Silica Spheres in Binary Mixtures

- binary mixture of water 2,6 lutidine
- lower consolute point
- silica spheres (2R = 0.16µm)

Prewetting ? Capillary condensation ?

How to Measure Tiny Forces

How to resolve pico ... femto Newton

Surface Force Apparatus (SFA)

J.N. Israelachvili, Intermolecular and surface forces, Academic Press (1991).

Atomic Force Microscopy (AFM)

Ducker, Senden, Pashley, Nature, **353**, 239 (1991). Milling, Vincent, J. Chem. Soc., Farady Trans. **93**, 3179 (1997).

resolution limited by spring constant $D \ge 0.01$ N/m 'freely' suspended colloidal probe particle

• Total Internal Reflection Microscopy (TIRM)

Walz, Current opinion in colloidal interfaces & science **2**, 600 (1997). Prieve, Luo, Lanni, Faraday Discuss. Chem. Soc. **83**, 297 (1987).

Experimental Setup

 $\Delta T = \pm 0.005^{\circ}C$

Sensitivity of TIRM

resolution < 10 fN !

Helden, Roth, Koenderink, Leiderer, Bechinger, PRL 90, 48301 (2003)

Scaling Function & Boundary Cond.

Vasilyev, Gambassi, Maciolek, Dietrich arXiv:0708.2902v1 (2007)

attractive and repulsive critical Casimir forces

Critical Casimir Forces: ++

++: particle & wall: preferential adsorption of lutidine

PS 3.7µm (x-linked ,weakly charged) HMDS treated silica wall (hydrophobic)

Critical Casimir Forces: --

- -: particle & wall: preferential adsorption of water

sulfate-terminated PS 2.4µm (10.1µC/cm²) hydrophilic silica wall

Gallagher et al. Phys. Rev. A 46, 7750 (1992)

Critical Casimir Forces: --

- -: particle & wall: preferential adsorption of water

sulfate-terminated PS 2.4µm (10.1µC/cm²) hydrophilic silica wall

Gallagher et al. Phys. Rev. A 46, 7750 (1992)

Correlation Length

Critical Casimir Forces: +-

asymetric boundary conditions repulsive critical Casimir force

Critical Casimir Forces: +-

asymetric boundary conditions repulsive critical Casimir force

Correlation Length

Off-Critical Composition: ++

reduction of surface energy by **BRIDGE FORMATION**

No bridge formation for $c_L > c_C$ \checkmark

Summary & Outlook

- Direct observation of critical Casimir forces in binary liquids
 - → attractive and repulsive interactions on the order of many kT

tunable interaction potential: no salt, no depletion agent, reversible !

- novel phases (photonic crystals)
- colloidal self-assembly on chemically patterned surfaces
- anti-stiction coatings for MEMS