Experimental observation of the Aubry transition in two-dimensional colloidal monolayers (PRX)

Physical Review X 8, 011050 (2018)

The possibility to achieve entirely frictionless, i.e. superlubric, sliding between solids, holds enormous potential for the operation of mechanical devices. At small length scales, where mechanical contacts are well-defined, Aubry predicted a transition from a superlubric to a pinned state when the mechanical load is increased. Evidence for this intriguing Aubry transition (AT), which should occur in one dimension (1D) and at zero temperature, was recently obtained in few-atom chains. Here, we experimentally and theoretically demonstrate the occurrence of the AT in an extended two-dimensional (2D) system at room temperature using a colloidal monolayer on an optical lattice. Unlike the continuous nature of the AT in 1D, we observe a first-order transition in 2D leading to a coexistence regime of pinned and unpinned areas. Our data demonstrate that the original concept of Aubry does not only survive in 2D but is relevant for the design of nanoscopic machines and devices at ambient temperature.

T. Brazda, A. Silva, N. Manini, A. Vanossi, R. Guerra, E. Tosatti, and C. Bechinger, Phys. Rev. X (2018)